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Following a model for the current limited by adsorption and surface diffusion at a rotating disk electrode (rde), the case is analyzed
when surface diffusion is preceded by adsorption with charge transfer. The electrode surface consists of a distribution of reaction
sites embedded in a supporting phase where electrosorption and surface diffusion take place. Electrosorption is described by five
parameters, an equilibrium potential (E0

ad), a microscopic partial charge transfer (zad), a charge transfer coefficient (βad), and the rate
constants for desorption and adsorption (k1 and k2, respectively). Analytical expressions for the current – overpotential (j vs ηad) and
the Koutecký – Levich (KL) relation (1/j vs 1/ω1/2) are provided as a function of electrosorption parameters and surface diffusivity
(Ds). The KL relation is linear, with the same slope as for a classical rde, whereas the intercept (1/ jK) depends on electrosorption
parameters and Ds. Tafel relations for the intercept current (log jK vs. η) are provided for the general and limiting cases. Effects of
the radial convective transport in the electrolyte over reaction sites, and of the overlapping of surface diffusion areas are included in
the model. The analytical expressions can be used to determine surface diffusion kinetics parameters from rde results.
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Reactivity at electrode surfaces is in most cases localized on active
sites. On single crystalline surfaces, active sites favor the interaction
with electrolyte species,1–4 or expose appropriate electronic orbitals
that enhance reactivity.5,6 Localized reactivity is more remarkable on
composite material surfaces, like supported catalysts and partially
blocked surfaces, and when the reactions are mediated by an inter-
action with the electrode surface, like electrocatalyzed reactions,1,3

electroadsorption,7 and electrodeposition.4,8 Unlocalized reactivity is
less usual and requires the participation of non-interacting reactants.9

Areas surrounding active sites, called supporting or inactive ar-
eas, may participate in the electrochemical reaction in different ways.
If adsorption is favored, the inactive areas concentrate reactants and
become a parallel path for the supply of species to active sites. Pre-
dominance of the adsorption path over the direct electrolyte path is
very probable in this case, even at low adsorbabilities, by a pure con-
centration effect.10 After adsorption, the species diffuse toward the
actives sites leading to adsorption-surface diffusion mediated mech-
anisms, like the spillover,11–18 and the bifunctional mechanisms.19,20

Surface diffusion mediated reactions require an optimal degree of in-
teraction of the adsorbed species with inactive areas, which should
lead to a ‘volcano’ dependence of reaction rate with the adsorption
energy like the encountered for many catalytic reactions.21

The rotating disk electrode (rde) technique is very appropriate for
the study of surface kinetics in electrochemical reactions because it
provides controlled and well defined hydrodynamics in the electrolyte.
A model was presented in previous works for the current limited by
surface diffusion at an rde, assuming an adsorption/desorption equi-
librium of dissolved species on inactive areas followed by diffusion
toward embedded, disk shape, reaction centers.22,23 Analytical equa-
tions for transport limited current as a function of adsorption and
surface diffusivity of the species were obtained, together with exam-
ples of the application to experimental results.22,24,25

In this work, an extension of the surface diffusion model is pre-
sented by assuming the possibility of adsorption with charge transfer
(electrosorption). With this aim, the following scheme will be consid-
ered for the reduction of a dissolved species (Ox):

Ox + zad e− k2−→ Oxzad −
ad [1]

Oxzad −
ad

k2−→ Ox + zad e− [2]
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Oxzad −
ad + (z − zad )e− → Red [3]

Reactions 1 and 2 describe the adsorption/desorption equilibrium
over the support, whereas 3 is the reaction at the edge of active sites
after surface diffusion from the adsorption point. The complete pro-
cess involves the exchange of z electrons, being zad transferred at
the adsorption site and z- zad at the active site. Parameter zad is a
microscopic partial charge transfer, as introduced by Lorentz and
Salié,26 that may have integer or fractional value, and always zad ≤ z.
This concept is different from the electrosorption valency, which is a
macroscopic structural parameter characteristic of double layers with
specific adsorption.27

For modelling purposes, the electrode surface will be a random
distribution of reaction disk centers embedded in an rde, following
the same reaction scheme provided in previous works.22,23 Analyti-
cal solutions are obtained for current limited by electrosorption and
surface diffusion. The overlapping of surface diffusion areas around
active centers is accounted for by an approximation.23 The effect of
the radial convective transport, which is always present with reaction
centers on an rde, is also included in the model.

Model

Mass balance equation.—A reduction process with reductive ad-
sorption and oxidative desorption will be considered, like in Eqs. 1–3.
In the steady-state, mass balance of the adsorbed species (cs) on the
surface surrounding active centers is given by:

Ds
∂2cs

∂r 2
+ Ds

r

∂cs

∂r
= k1cs exp

[
βad

zad F

RT
ηad

]

−k2cy=0 exp

[
−(1 − βad )

zad F

RT
ηad

]
[4]

Where positive signs are assigned to oxidative currents and to over-
potentials favoring oxidation, as usual. Eq. 4 assumes a first order ad-
sorption/desorption following Butler-Volmer kinetics, and relates the
adsorbed concentration with surface diffusivity, Ds, the electrosorp-
tion charge, zad, rate constants for desorption and adsorption, k1 and
k2, and the (modified) symmetry factor for the electrosorption, βad.
The symmetry factor is close to 0.5 for single step electrodic processes
with dissolved reactants and products,28 but, for electrosorption, given
the intrinsic asymmetry of the process, the parameter may depart con-
siderably from this value.9 The overpotential (ηad) in Eq. 4 can be
referred to the potential under equilibrium between the electrosorbed
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surface concentration far from any reaction site (cs(∞)) and the
electrolyte concentration in front of the surface (cy = 0):

ηad = E − E0
ad = RT

zad F
ln

[
k1cs(∞)

k2cy=0

]
[5]

Ead
0 is a property of the reactant and the inactive surface, favouring

high positive values the reductive adsorption. A surface diffusion
length for reductively adsorbed species can be defined:

λs =
√

Ds

k1

exp

[
−βad

zad F

2RT
ηad

]
[6]

Where λs is the average distance travelled by ad-species between an
adsorption and a desorption event. It depends exponentially on elec-
trode potential, as a difference from the pure chemical adsorption
analyzed in previous works.22 An additional potential dependence of
λs could be implicit in parameter Ds, when the double-layer electric
field interacts with the adsorbate dipole moment changing the acti-
vation energy for surface diffusion.4,9 Such dependence will not be
considered here.

Substitution of Eq. 6 into Eq. 4 gives rise to:

∂2cs

∂r 2
+ 1

r

∂cs

∂r
= 1

λ2
s

(
cs − cy=0

k2

k1

exp

[
− zad F

RT
ηad

])
[7]

Equation 7 can be solved by a standard procedure using the appropriate
boundary conditions at the edge of a reaction center and far enough,
which for a surface diffusion limited reaction are:

cs(rp) = 0

cs(∞) = k2

k1

cy=0 exp

[
− zad F

RT
ηad

]
[8]

The resulting adsorbed surface concentration is (Appendix A):

cs(r ) = k2

k1

cy=0 exp

[
− zad F

RT
ηad

] ⎛
⎝1 −

K0

(
r
λs

)
K0

(
r p

λs

)
⎞
⎠ [9]

Eq. 9 is for a reduction preceded by reductive electrosorption. If
reduction is preceded by oxidative adsorption, the same expression is
valid but with surface diffusion length given by λs = (Ds/k1)1/2exp[(1-
βad)zadFηad/(2RT)] (cf. Eq. 6). Analogous equations can be written
for oxidation reactions with due account for the signs of current and
overpotential. In the next section, analytical equations for the current
as a function of electrosorption and surface diffusion parameters will
be obtained. Overlapping of surface diffusion areas and the effect of
radial transport in the electrolyte over the rde surface will be included
in the treatment.

Current limited by electrosorption and surface diffusion.—In the
steady state, three parallel contributions to the faradaic current can be
considered at an rde with surface covered by a distribution of reaction
centers, the surface diffusion current, the electrosorption current, and
the electrolyte current. The three paths differ in the place where charge
transfer occurs, the edge of active centers, the surrounding areas,
and the surface of active centers, respectively. In addition, the radial
convection generated by the rde on top of active centers will be treated
as an additional current contribution on the surface of active centers.

Surface diffusion current.—Species adsorbed on inactive areas may
diffuse and discharge at the edges of reaction centers. The resulting
current (jedges) can be obtained from Eq. 9 after application of Fick’s
first law and Faraday law at the edge of embedded disk centers with
radius rp:

jedges(η) = −(z − zad )F Np2πrp Ds

(
∂cs

∂r

)
r=r p

[10]

Where the charge transferred at the edges after the preceding elec-
trosorption is z-zad. The factor Np2πrp accounts for the length of

edges available for reaction in a distribution of active centers. After
substitution of Eq. 9, the surface diffusion current is:

jedges(ηads) = − (z − zad )

z
Bsp

θp

rp
cy=0 exp

(
−

(
1 − βad

2

)
zad F

RT
ηad

)
[11]

Where the following identities have been used:

Bsp = 2zFk2

√
Ds

k1

K1

(
r p

λs

)
K0

(
r p

λs

) [12]

θp = Npπr 2
p [13]

Notice that jedges in Eq. 11 shows a multiple dependence on the over-
potential, which is explicit in the exponential factor and implicit in
Bsp through λs (Eq. 6).

Electrosorption current.—Reductive adsorption and oxidative des-
orption on inactive areas may give rise to a faradaic current given by:

jad = (1 − θp)Fzad

(
k1cs exp

[
βad

zad F

RT
ηad

]

− k2cy=0 exp

[
−(1 − βad )

zad F

RT
ηad

] )
[14]

To obtain an analytical expression, it is necessary to calculate the
concentrations of dissolved and adsorbed species on the electrode
surface, i.e. cy=0 and c̄s, respectively. cy=0 will be obtained from the
solution of the hydrodynamic equations for an rde, as shown in the
next section. For c̄s, an average value will be calculated by considering
a distribution of active centers where each center is surrounded by a
‘cloud’ of centers at a half average distance d1/2. For a square array
distribution, for example, the average half distance is given by d1/2

= 1/2(1/Np1/2−2rp). The average adsorbed concentration (c̄s) can be
obtained from the integration of the surface concentration over the
surrounding area, using Eq. 9:

cs = 1

π
(
d2

1/2 − r 2
p

) ∫ d1/2

r p

2πrcsdr

= cy=0k2 exp
[− zad F

RT ηad

]
k1

×
⎛
⎝1 + 2λs(

d2
1/2 − r 2

p

) d1/2K1

(
d1/2

λs

)
− rpK1

(
r p

λs

)
K0

(
r p

λs

)
⎞
⎠ [15]

The current due to the electrosorption process results after substi-
tution of Eq. 15 into Eq. 14:

jad = −(1−θp)
zad

z
cy=0 Bsp Bad exp

[
−

(
1 − βad

2

)
zad F

RT
ηad

]
[16]

Where the parameter Bad is given by:

Bad =
rpK1

(
r p

λs

)
− d1/2K1

(
d1/2

λs

)
(
d2

1/2 − r 2
p

)
K1

(
r p

λs

) [17]

Bad is always a positive quantity, irrespective of the values of the three
distances involved (rp, λs and d1/2), so only cathodic jad may result,
which is consistent with the reductive adsorption-reduction scheme
adopted: a single adsorption event gives rise to net current only if the
adsorbed species is able to arrive and discharge at the edge of a reaction
center; otherwise current will cancelled out by oxidative desorption.

Electrolyte current.—Dissolved species may react on the front
surface of the reaction centers. The current generated by a distribution
of centers covering partially the surface of an rde is given by:

j f ront = −θp(c∗ − cy=0)BLω1/2 [18]
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Where BL is the Levich parameter:

BL = 0.62zF D2/3ν−1/6 [19]

Surface electrolyte concentration (cy=0).—A condition necessary
for application of the model to a distribution of centers is that the
surface concentration must be laterally uniform in front of the elec-
trode surface, which is accomplished under sufficiently high rotation
rates:22,23

ω ≥ D2/3ν1/3rp

δ2
hrD

[20]

Where rD is the electrode radius, and δh is the minimum distance above
the electrode surface with uniform concentration. The concentration
at the surface is given by the solution of hydrodynamics Equations:29

cy=0 = c∗ − 0.8934

(
3Dω−3/2ν1/2

0.51

)1/3
j

zF D
[21]

Radial transport in the electrolyte.—The radial transport over reac-
tion centers is responsible for the homogeneous surface concentration
profile in front of the rde, necessary for model conditions, but in addi-
tion, it may contribute to additional current generation. The radial flow
by diffusional and convective forces has been already treated in the
literature. With respect to diffusional radial transport, Levart studied
the effect on an idealized partially blocked rde by using a numerical
method,30 and concluded that the radial diffusion is negligible for elec-
trodes diameters 2rD > 1 mm and rotation rates ω > 1 s−1 (>10 rpm).
Similar conclusions were attained by Filinovsky,31 and Moldoveanu
and Anderson32 studying current response of an array inside a convec-
tive flow-through rectangular channel. In such system, the diffusion
parallel to the array plane contributes minimally compared with the
perpendicular diffusion. We may assume, therefore, that the contri-
bution by diffusive radial transport is minimal provided conditions
implicit in Eq. 20 are more restrictive than Levart condition.

Radial convection, on the other hand, may have more significant

contribution to the steady-state current.33 It is possible to estimate
an additional contribution to the current, jradial,, by considering the

reaction of species flowing parallel over reaction centers at a velocity
(vr) within a certain distance δr (Fig. 1).

The current originated in this way can be obtained from the fol-
lowing double integration:

jradial = − zFcy=0

πr 2
D

∫ rD

0

√
Npdr

∫ 2πr

0
vr 2rpδr

√
Npdr [22]

Where δr is estimated from adimensional mass transport numbers in
Appendix C. The use of surface concentration (cy = 0) in Eq. 22 as-
sumes that δr is much shorter than the electrolyte Nernst diffusion
length. The radial velocity at δr (vr) is taken from the linear approxi-
mation of the solution of von Karman and Cochran under steady-state
conditions:29

vr = 0.51 ν−1/2ω3/2δr r [23]

Substitution of Eq. 23 into 22 and integrations gives for the radial
convective current:

jradial = −2.272θpcy=0 BLω1/2 [24]

Where substitution of parameter δr determined in Appendix C has
been carried out:

δr = 2.088r 1/2
p

r−1/2ω−1/2 D1/3ν1/6 [25]

Eq. 24 has a formal similarity with the electrolyte current (Eq.
18), as expected, and must be considered a qualitative description of
the contribution of radial convection to the current. Its quantitative
validity should be tested experimentally, a possible way is described
below, and a correction factor may be applied if necessary.

Total current.—This parameter is obtained by adding all the con-
tributions calculated, including the radial transport:

j = jedges + jad + j f ront + jradial [26]

Solving the system of Equations 11, 16, 18, 21, 24, 26, yields
the expressions for the electrolyte concentration at the surface, four
current contributions, and the total current.

cy=0 = c∗ BLω1/2

Bsp exp
[− (

1 − βad
2

) zad F
RT ηad

] (
z−zad

z
θp

1−θp
r−1

p + zad
z Bad

)
+

(
2.272θp

1−θp
+ 1

)
BLω1/2

[27]

jedges = −c∗
(z−zad )

z Bspθpr−1
p exp

(− (
1 − βad

2

) zad F
RT ηad

)
BLω1/2

Bsp exp
[− (

1 − βad
2

) zad F
RT ηad

] (
z−zad

z
θp

1−θp
r−1

p + zad
z Bad

)
+

(
2.272θp

1−θp
+ 1

)
BLω1/2

[28]

jad = −c∗
zad (1−θp )

z Bsp Bad exp
[− (

1 − βad
2

) zad F
RT ηad

]
BLω1/2

Bsp exp
[− (

1 − βad
2

) zad F
RT ηad

] (
z−zad

z
θp

1−θp
r−1

p + zad
z Bad

)
+

(
2.272θp

1−θp
+ 1

)
BLω1/2

[29]

j f ront = −c∗
θp

((
2.272θp

1−θp

)
BLω1/2 + Bsp exp

[− (
1 − βad

2

) zad F
RT ηad

] (
z−zad

z r−1
p

θp

1−θp
+ zad

z Bad

))
BLω1/2

Bsp exp
[− (

1 − βad
2

) zad F
RT ηad

] (
z−zad

z
θp

1−θp
r−1

p + zad
z Bad

)
+

(
2.272θp

1−θp
+ 1

)
BLω1/2

[30]

jradial = −c∗ 2.272θp B2
L
ω

Bsp exp
[− (

1 − βad
2

) zad F
RT ηad

] (
z−zad

z
θp

1−θp
r−1

p + zad
z Bad

)
+

(
2.272θp

1−θp
+ 1

)
BLω1/2

[31]

j = −c∗

(
Bsp exp

[− (
1 − βad

2

) zad F
RT ηad

] (
z−zad

z
θp

1−θp
r−1

p + zad
z Bad

)
+

(
2.272θp

1−θp

)
BLω1/2

)
BLω1/2

Bsp exp
[− (

1 − βad
2

) zad F
RT ηad

] (
z−zad

z
θp

1−θp
r−1

p + zad
z Bad

)
+

(
2.272θp

1−θp
+ 1

)
BLω1/2

[32]

Equations 27–32 assume no overlapping of surface diffusion areas,
which is a restrictive condition, only valid with very low surface site
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Figure 1. Generation of radial convective current.

densities, low surface diffusivities, and/or low overpotentials. Most
general treatment should include the possibility of the overlapping of
surface diffusion areas.

Overlapping of surface diffusion areas.—Surface diffusion over-
lapping will be included by using the same approximation as in pre-
vious work to a partially blocked surface.23 Analogous equations are
formulated and solved following an identical procedure for a reduction
process preceded by reductive adsorption (Appendix B). The resulting
expressions are:

cy=0 = c∗ BLω1/2

z−zad
2z(1−θp ) B∗

s Np exp
[− (

1 − βad
2

) Fzad
RT ηad

] + B∗
ad exp

[− (1 − βad ) Fzad
RT ηad

] +
(

2.272θp

1−θp
+ 1

)
BLω1/2

[33]

jedges = −c∗
z−zad

2z BLB∗
s Np exp

[− (
1 − βad

2

) Fzad
RT ηad

]
ω1/2

z−zad
2z(1−θp ) B∗

s Np exp
[− (

1 − βad
2

) Fzad
RT ηad

] + B∗
ad exp

[− (1 − βad ) Fzad
RT ηad

] +
(

2.272θp

1−θp
+ 1

)
BLω1/2

[34]

jad = −c∗ BLB∗
ad(1 − θp) exp

[− (1 − βad ) Fzad
RT ηad

]
ω1/2

z−zad
2z(1−θp ) B∗

s Np exp
[− (

1 − βad
2

) Fzad
RT ηad

] + B∗
ad exp

[−(1 − βad ) Fzad
RT ηad

] +
(

2.272θp

1−θp
+ 1

)
BLω1/2

[35]

j f ront = −c∗BLθpω
1/2

⎛
⎝1 − BLω1/2

z−zad
2z(1−θp ) B∗

s Np exp
[− (

1 − βad
2

) Fzad
RT ηad

] + B∗
ad exp

[−(1 − βad ) Fzad
RT ηad

] +
(

2.272θp

1−θp
+ 1

)
BLω1/2

⎞
⎠ [36]

jradial = −c∗ 2.272θpB2
L
ω

z−zad
2z(1−θp ) B∗

s Np exp
[− (

1 − βad
2

) Fzad
RT ηad

] + B∗
ad exp

[−(1 − βad ) Fzad
RT ηad

] +
(

2.272θp

1−θp
+ 1

)
BLω1/2

[37]

j = −c∗BLω1/2

⎛
⎝1 − BLω1/2

z−zad
2z(1−θp ) B∗

s Np exp
[− (

1 − βad
2

) Fzad
RT ηad

] + B∗
ad exp

[−(1 − βad ) Fzad
RT ηad

] +
(

2.272θp

1−θp
+ 1

)
BLω1/2

⎞
⎠ [38]

Where Bs
∗ and Bad

∗ are given by Eqs. B8 and B12, respectively. Fig.
2 shows a plot of the different current contributions. Fig. 3 compares
current - overpotential curves with and without surface diffusion over-

Figure 2. Components of the current as a function of overpotential, calculated
with surface diffusion overlapping correction (Eqs. 34–38). Parameters: ω =
210 s−1, z = 4, zad = 1, D = 1.7 · 10−5 cm2 · s−1, Ds = 10−8 cm2 · s−1,ν =
0.01 cm2 · s−1, c∗ = 1.1 · 10−6 mol cm−3, rp = 10−7 cm, θp = 0.05, k1 =
28000 s−1, k2 = 0.006 cm · s−1, βad = 0.5.

lapping, for three values of βad parameter. High βad gives rise to intense
surface overlapping, and the correction is more notorious.

Koutecký-Levich (KL) analysis.—The plot 1/j vs 1/ω1/2 is used for
the analysis of rde results to obtain kinetics parameters of the electro-
chemical reaction.29 The expression for a continuous disk electrode
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Figure 3. Current as a function of overpotential, calculated with (Eq. 38,
continuous black line) and without (Eq. 32, red dashed line) surface diffusion
overlapping correction, for three values of βad. Other parameters as in Fig. 2.

is:

1

j
= 1

c∗

(
1

jK
+ 1

BLω1/2

)
[39]

Where jK corresponds to the current in the absence of electrolyte
mass-transfer limitation (cy = 0 = c∗), limited by any other kinetics
type (physical, chemical or electrochemical).29,34,35 When the limiting
kinetics is surface diffusion and electrosorption, the corresponding KL
expression can be obtained from Eq. 38, accounting for diffusion area
overlapping:

1

j
= − 1

c∗

⎛
⎝ 1

z−zad
2z(1−θp ) B∗

s Np exp
[− (

1 − βad
2

) Fzad
RT ηad

] + B∗
ad exp

[−(1 − βad ) Fzad
RT ηad

] +
(

2.272θp

1−θp

)
BLω1/2

+ 1

BLω1/2

⎞
⎠ [40]

Notice that the first term in Eq. 40, corresponding to the KL inter-
cept (1/jK), includes a rotation rate dependent term (( 2.272θp

1−θp
)BLω1/2)

accounting for radial convection. KL plots for different overpoten-
tials are shown in Fig. 4. High overpotential and low rotation rates
allows for current limitation by adsorption and surface diffusion. In
this case, KL slope is the same as for the continuous rde (Eq. 39), and
the intercept current (jK), obtained by extrapolation, is determined
by active sites distribution parameters (rp, θp) and surface diffusion
kinetics (Bs

∗, Bad
∗, βad, zad, ηad). The equation predicts a linear loga-

rithmic dependence of jK with overpotential with a change in the slope
due to a change from βad/2 at low overpotential to βad at high over-
potential (Fig. 5). Tafel slope doubling is a common effect of mass
transport28,36–39). Here, the slope change indicates the passing from
growing surface diffusion areas at low overpotential to overlapped
surface diffusion areas at high overpotential.

Radial convection predominance is attained at high enough rota-
tion rates and/or low overpotentials. Predominance at high rotation
rates is reflected by the increase in KL slope, approaching the value

m = − 1
c∗ BL

(
θ−1

p +1.272

2.272 ), while the intercept goes to zero (Fig. 4). Pre-
dominance at low overpotential leads to constant jk (Fig. 5). In this
way, the conditions when radial convection is predominant can be
characterized experimentally if the rotation rates are accessible and
there is no other kinetics limiting apart from surface diffusion kinetics
(like charge transfer, or chemical reaction).

Figure 4. K-L plot (Eq. 40) for three values of ηad, together with theoretical
plot for a continuous rde (Eq. 39, 1/jLevich) and an array rde with predominant
radial convection (Eq. 50). Other parameters as in Fig. 2.

Limiting cases.—There are some cases of practical relevance that
give rise to simplification of the expressions.

Adsorption without charge transfer (zad = 0).—Total current (Eqs.
32 and 38, without and with surface diffusion overlapping, respec-
tively) reduce to those obtained in previous work for physicochemical
adsorption, ie Eqs. 24d and 28d in Ref. 23 (notice that expressions
in Ref. 23 do not include the effect of radial convection). The KL

Figure 5. Plot of jK as a function of overpotential for current limited by elec-
trosorption and surface diffusion (Eq. 40), for two values of βad. Expressions
for Tafel slopes are indicated. Other parameters as in Fig. 2.
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equations are (without and with surface diffusion overlapping):

1

j
= − 1

c∗

(
1 − θp

πrp Bsp Np + 2.272θp BLω1/2
+ 1

BLω1/2

)
[41]

1

j
= − 1

c∗

(
1 − θp

0.5B∗
s Np + 2.272θp BLω1/2

+ 1

BLω1/2

)
[42]

The KL slope is the same as for the continuous disk electrode, whereas
the intercept is dependent on surface coverage and diffusion rate but
is independent on overpotential.

Adsorption without charge transfer mechanism should give rise
to well defined limiting currents in rde voltammetric experiments,
below or at the Levich value (jL = −c∗ BL ω1/2) depending on the sur-
face centers density and surface diffusion length.22,23 In contrast, the
electrosorption mechanism is characterized by apparently increasing
limiting currents with overpotential up to the Levich limiting current.
Both types of behavior can be seen in many rde results of the recent
literature of the oxygen reduction reaction on electrocatalytic surfaces.

Full charge transfer at adsorption (zad = z).—If the whole charge
transfer occurs at the adsorption site, then the process occurring at
the reaction site after surface diffusion is of physico-chemical nature.
The expression for the total current with surface diffusion overlapping
correction and accounting for radial convection from Eq. 38 is now:

j = −c∗BLω1/2

×
⎛
⎝1 − BLω1/2

B∗
ad exp

[−(1 − βad ) Fz
RT ηad

] +
(

2.272θp

1−θp
+ 1

)
BLω1/2

⎞
⎠

[43]

Under high reductive overpotentials (ηad � 0) the current reduces to
the Levich equation (j = −c∗BLω

1/2). The KL analysis results:

1

j
= − 1

c∗

×
⎛
⎝ 1

B∗
ad exp

[−(1 − βad ) Fz
RT ηad

] +
(

2.272θp

1−θp

)
BLω1/2

+ 1

BLω1/2

⎞
⎠

[44]

The intercept current shows an exponential dependence on overpo-
tential that, together with the implicit dependence in Bad

∗ (Eq. B12),
give rise to a change in Tafel slope from (1-βad/2) to (1-βad) when
going from low to large (negative) overpotential. Experimentally, this
process can be differentiated from the general case by lower Tafel
slope values because they involve the adsorption charge corresponds
with the full charge transferred. Full charge transfer at the adsorption
step followed by surface diffusion can be the case of electrodeposition
when adatoms are electrochemically generated and diffuse toward the
growth sites.8

Large surface diffusion length (λs � d1/2).—A third simplifying
limiting case is under strong overlapping of surface diffusion areas,
when the surface diffusion length is much larger than the distance
between particles. The situation is probable at high coverage or high
overpotential. The total current and KL expression obtained from
Eq. 38:

j = −c∗ zad Fk2 BLω1/2

zad Fk2 + exp
[
(1 − βad ) zad F

RT ηad

] (
2.272θp

1−θp
+ 1

)
BLω1/2

[45]

1

j
= − 1

c∗

×
⎛
⎝ 1

zad Fk2 exp
[−(1−βad ) Fzad

RT ηad

]+(
2.272θp

1−θp

)
BLω1/2

+ 1

BLω1/2

⎞
⎠

[46]

The KL plot keeps the same linear slope, whereas jK shows a soft
dependence with overpotential (if zad � z) and a single value of the
Tafel slope.

Very short surface diffusion length (λs→0).—Under negligible
surface diffusion, the total current can be obtained from Eq. 32 (no
account of overlapping):

j = −c∗

(
2zFk2

√
Ds
k1

(
1 − (

1 − βad
2

) zad F
RT ηad

) (
z−zad

z r−1
p

θp

1−θp

)
+

(
2.272θp

1−θp

)
BLω1/2

)
BLω1/2

2zFk2

√
Ds
k1

(
1 − (

1 − βad
2

) zad F
RT ηad

) (
z−zad

z
θp

1−θp
r−1

p

)
+

(
2.272θp

1−θp
+ 1

)
BLω1/2

[47]

1

j
= − 1

c∗

⎛
⎝ 1((

2.272θp

1−θp

)
BLω1/2 + 2zFk2

√
Ds
k1

(
1 − (

1 − βad
2

) zad F
RT ηad

) (
z−zad

z r−1
p

θp

1−θp

)) + 1

BLω1/2

⎞
⎠ [48]

The intercept current shows now single linear dependence with
overpotential. KL slope is the same as for the continuous electrode
(except when radial convection term predominates). Short surface dif-
fusion can be ascribed to the case of an electrochemical reaction pre-
ceded by electrosorption on the reaction site. This situation was stud-
ied for continuous rde by Laviron, who shows the prevalence of the ad-
sorbed reaction path over direct reaction by dissolved species.10 Vargas
et al. assume a reaction limited by a Langmuir-Hinshelwood adsorp-
tion mechanism and arrive to a non-linear KL plot with decreasing
slope when approaching the intercept,40 which is different from the
linear KL obtained here with Henry isotherm. Non-linearity of KL is
also expected with electrodes covered by a film.29

Negligible adsorbability.—If adsorption on inactive areas is low
and the concentration of adsorbed species negligible, the reaction
takes place predominantly by dissolved species on the front surface
of reaction centers, and the current is given by:

j = −c∗ 2.272BLω1/2

1.272 + θ−1
p

[49]

The KL relation is characterized by higher slope than the continuous
disk value, and zero intercept (Fig. 4):

1

j
= − 1

2.272c∗ BLω1/2

(
1.272 + 1

θp

)
[50]

Increasing KL slope is normally attributed in rde experiments to
a decrease in the charge transfer number (z), for instances when
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Figure 6. a) j vs. θp and b) 1/j vs. 1/θp plots, without (Eqs. 49 and 50, red
line), and with (Eqs. 38 and 40, black line) surface diffusion-electrosorption at
two overpotentials. Other parameters as in Fig. 2.

hydrogen peroxide is produced in oxygen reduction experiments. Here
it is shown that the same effect can be attributed to the radial con-
vection over reaction sites. Fig. 6 shows the dependence of current
on centers coverage and the inverse 1/j vs. 1/θp relation for current
limited by pure convection (radial and axial), according to Eqs. 49 and
50, compared with the case with surface diffusion and electrosorption
contribution (Eq. 40). Eq. 50 can be used to test experimentally the
validity of the radial convection current (Eq. 24).

Table I summarizes the KL intercept values for the general and
limiting cases studied.

Conclusions

An analytical model is presented for a reaction limited by adsorp-
tion with charge transfer and surface diffusion. The equations for the
current are provided as a function of electrosorption kinetics and sur-
face diffusion, including the effects of surface diffusion overlapping
and radial convection. Radial convective transport predominates at
low overvoltage and high rotation rates, and gives rise to a simple
linear relation between the inverse current and the inverse coverage of
reaction sites (1/j vs. 1/θp). The KL analysis for the general and some
limiting cases are described.
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Appendix A

Eq. 7 can be solved by means of a change of variable to transform it into the homo-
geneous Bessel equation:

u = cs − k2

k1

cy=0 exp

[
− zad F

RT
ηad

]
[A1]

∂2u

∂r2
+ 1

r

∂u

∂r
− u

λ2
s

= 0 [A2]

Boundary conditions for an array of centers under surface diffusion limitation are (Eq. 8):

cs (rp) = 0 ⇒ u(rp) = − k2

k1

cy=0 exp

[
− zad F

RT
ηad

]
[A3]

cs (∞) = k2

k1

cy=0 exp

[
− zad F

RT
ηad

]
⇒ u(∞) = 0 [A4]

The first boundary implies surface diffusion limited reaction at active edges. The second
boundary assumes equilibrium of the adsorbed concentration far from a reaction center;
such boundary introduces the constraint of no surface diffusion overlapping so the inter-
centers distance must be larger than the surface diffusion length. An approximate treatment
for the case with overlapping surface diffusion will be given below using the geometrical
approximation of an array of center to a partially blocked surface, as in previous work
[Appendix B].

The general solution of Eq. A2 is:

u(r ) = C1I0

(
r

λs

)
+ C2K0

(
r

λs

)
[A5]

The integration constants can be determined from the boundary conditions. By re-
verting the change of variables, the surface concentration results:

cs (r ) = k2

k1

cy=0 exp

[
− zad F

RT
ηad

] ⎛
⎝1 −

K0

(
r
λs

)
K0

(
r p
λs

)
⎞
⎠ [A6]

Appendix B

The case for an array with overlapping surface diffusion areas will be treated by
means of a geometrical approximation of an array of active centers to a partially blocked

Table I. KL intercept current (jK), for a reduction process limited by reductive adsorption and surface diffusion, and under different limiting
cases. The expressions are presented without and with surface diffusion overlapping correction. The term accounting for radial convection has
been omitted.

Case No overlapping correction λs overlapping correction

General −c∗ Bsp exp[−(1 − βad
2 ) zad F

RT ηad ]( z−zad
z

θp
1−θp

r−1
p + zad

z Bad ) −c∗( z−zad
2z(1−θp ) B∗

s Np exp[−(1 − βad
2 ) Fzad

RT ηad ]

+B∗
ad exp[−(1 − βad ) Fzad

RT ηad ])

zad = 0 −c∗ πr p Bsp Np

1−θp
−c∗ 0.5B∗

s Np
1−θp

zad = z −c∗ Bsp Bad exp[−(1 − β
2 ) zF

RT ηad ] −c∗ B∗
ad exp[−(1 − β) zF

RT ηad ]
λs � d1/2 - −c∗zad Fk2 exp[−(1 − βad ) zad F

RT ηad ]

λs→0 −c∗2zFk2

√
Ds
k1

r−1
p ( z−zad

z
θp

1−θp
)(1 − (1 − βad

2 ) zad F
RT ηad ) -

Very low adsorption 0 0
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surface, as in previous work.23 The solution of Eq. 7 is now carried out with boundary
conditions for a partially blocked surface:

cs (rs ) = 0 ⇒ u(rs ) = − k∗
2

k∗
1

cy=0 exp

[
− zad F

RT
ηad

]
(

dcs

dr

)
r=0

= 0 ⇒
(

du

dr

)
r=0

= 0 [B1]

The second boundary condition fixes the surface concentration gradient at the center of
the blocked surface (Newmann boundary). Applying the boundaries to the solution of
Eq. 7 (Eq. A5) results:

cs (r ) = k∗
2

k∗
1

cy=0 exp

[
− zad F

RT
ηad

] ⎛
⎝1 −

I0

(
r
λs

)
I0

(
rs
λs

)
⎞
⎠ [B2]

The current at the edges of blocking areas (jedges) of radius rs limited by surface diffusion
with charge transfer adsorption is obtained from application of Fick’s first law and Faraday
law at the edges:

jedges (η) = −(z − zad )F Np2πrs Ds

(
∂cs

∂r

)
r=rs

[B3]

The resulting expression is:

jedges (η) = − (z − zad )

z
Npπrs cy=0 Bs exp

[
−zad F

ηad

RT

(
1 − β

2

)
]

]
[B4]

Bs = 2zFk2

√
Ds

k1

I1

(
rs
λs

)
I0

(
rs
λs

) [B5]

Eq. B4 can be used for a square array of centers with overlapping of surface diffusion
areas by using a geometrical approximation consisting of the substitution of 2πrs for
parameter g (edges length), and replacing rs in terms of the density and size of active
centers:23

g = 2rs

(
π − 4arcos

1

2rs
√

Np

)
[B6]

rs = 0.7

(
1√
Np

− rp

)

The resulting Equation for edges current with overlapping surface diffusion areas:

jedges (η) = − (z − zad )

z

Np

2
cy=0 B∗

s exp

[
−

(
1 − β

2

)
zad F

RT
ηad

]
[B7]

B∗
s = gBs [B8]

Adsorption/desorption currents
The adsorption/desorption process also leads to a faradaic current that can be calcu-

lated from the following expression:

jad = θs Fzad

(
k∗

1 cs exp

[
βad

zad F

RT
ηad

]
− k∗

2 cy=0 exp

[
−(1 − βad )

zad F

RT
ηad

])
[B9]

The average value of cs (c̄s ) can be calculated from:

c̄s = 1

πr2
s

∫ rs

0
2πrcs dr = k∗

2

k∗
1

cy=0 exp

[
− zad F

RT
ηad

]⎛
⎝ I2

(
rs
λs

)
I0

(
rs
λs

)
⎞
⎠ [B10]

Where the integration is carried out using Eq. B2 for surface concentration. The current
due to electrosorption results:

jad = −θs cy=0 B∗
ad exp

[
− zad (1 − βad )F

RT
η

]
[B11]

Where Bad
∗ is given by

B∗
ad = zad Fk2

⎛
⎝1 −

I2

(
rs
λs

)
I0

(
rs
λs

)
⎞
⎠ [B12]

Total diffusion limiting current
For the total current flowing through the electrode surface, three contributions must

be considered for surface diffusion limitation and with charge transfer adsorption:

j = j f ront + jradial + jedges + jad [B13]

jfront is the current due to reaction of dissolved species on the front surface of reaction
centers under diffusion limiting conditions, given by Eq. 18; jradial is the current due to
radial convection over reaction centers, given by Eq. 24. Using electrolyte concentration
over front of the surface (cy=0) from Eq. 21, and solving the system of equations (Eqs.
18, 21, 24, B7, B11, and B13), yields Eqs. 33–38.

Appendix C

The reaction distance over reaction centers (δr) (Eqs. 22–25) can be estimated from
the mass transfer number under laminar flow over a flat surface:36

Shavg = 0.6774Re1/2 Sc1/3 = 0.6774

(
vr,∞2rp

ν

)1/2( ν

D

)1/3
[C1]

Where vr,∞ is the average radial velocity far from the disk surface. Using vr,∞ = ωr and
the relation between the average Sherwood number (Shavg) and the reaction distance:

Shavg = 2rp

δr
[C2]

The reaction distance is:

δr = 2.088r1/2
p r−1/2ω−1/2 D1/3ν1/6 [C3]

The value resulting for aqueous solution at 2500 rpm and rp = 10−7 nm is δr = 0.6 nm.

List of Symbols

Symbol Description Units
Bad adsorption factor (Eq. 17) cm−1

Bad
∗ adsorption factor with surface

diffusion overlapping (Eq. B12)
C · cm · mol−1 · s−1

BL Levich factor (Eq. 19) C · cm · mol−1 · s−1/2

Bs partially blocked factor (Eq. B5) C · cm2 · mol−1 · s−1

Bs
∗ (= Bs · g) surface diffusion factor

with surface diffusion overlapping
(Eq. B8)

C · cm3 · mol−1 · s−1

Bsp surface diffusion factor (Eq. 12) C · cm2 · mol−1 · s−1

c∗ bulk electrolyte concentration mol · cm−3

cs adsorbed concentration mol · cm−2

c̄s average adsorbed concentration mol · cm−2

cs(∞) adsorbed concentration far from a
reaction site

mol · cm−2

cy=0 surface electrolyte concentration mol · cm−3

d1/2 Half distance between centers cm
d lattice parameter of a surface square

distribution of centers
cm

D diffusion coefficient in the electrolyte cm2 · s−1

Ds surface diffusion coefficient cm2 · s−1

F Faraday constant (96485) C · mol−1

g active edges length of superposed
blocked areas (Eq. B6)

cm

In modified Bessel function of first kind
and order n

-

J total current A · cm−2

jedges current component due to adsorbed
species reaction at the edges of the
centers

A · cm−2

jfront current component due to reaction of
dissolved species at the front surface
of the centers

A · cm−2

jK current from the intercept of a
Koutécky-Levich plot

A · cm−2

jL diffusion limited current from Levich
equation

A · cm−2

jradial current component due to radial
convection over the centers

A · cm−2

k1 desorption rate constant s−1

k2 adsorption rate constant cm · s−1

Kn modified Bessel function of second
kind and order n

-

Np density of centers cm−2

r radial coordinate cm
rD radius of the rotating disk cm
rp radius of a reaction center (disk

shape)
cm

rs radius of a blocking area (disk shape) cm
vr average radial velocity cm · s−1

Z total electrons exchanged -
zad electrons exchanged at adsorption -
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Greek

βad charge transfer coefficient of
electrosorption

-

δh homogeneous concentration distance cm
δr reaction distance cm
ηad overpotential V
λs surface diffusion length of

electroactive species (Eq. 6)
cm

ν kinematic viscosity cm2 · s−1

θp coverage -
ω angular rotation rate s−1
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